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AbstractCPUs, network interfaces, and networks are improving, providing higher bandwidthsand lower latencies. System software overhead makes it impossible for a user ap-plication to achieve bandwidths and latencies near the hardware limits. This isespecially true for remote handler invocation. Typically, the remote node has totrap into the kernel and perform an expensive context switch to the handler. Thishampers global communication operations and runtime systems, such as the one forCilk and Split-C for example.Executing the untrusted remote handler inside the operating system kernel elim-inates the overhead of context switches and disrupted cashes. Several methods toexecute untrusted user code in a privileged environment exist. The research pro-posed in this paper compares these methods and attempts to prove that a kernelembedded interpreter has the necessary performance and safety characteristics tobe the ideal method for remote handler invocation in massively parallel systems.
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Chapter 1IntroductionA statement of the problem and why it should be solved [55].Explicit message passing and various forms of one-sided communications (putsand gets) are e�cient methods to harness the power of a distributed memory ma-chine. Much e�ort and research is being spent on improving message passing latencyand bandwidth for massively parallel systems. While this research is important, itdoes not address remote execution. Often it is necessary to perform a simple action,such as adding two numbers or incrementing a counter, when a message arrives.Most mechanisms that support remote execution have an overhead of ten to a hun-dred times the cost to deliver a simple message.Collective communications, such as broadcast and global sum, need low latenciesto send messages between nodes. On each node, however, it is important that themessage be processed quickly and then sent on to other nodes. This is di�cultfor routines that allow user-de�ned operations. While common operations, such asglobal sum and global max, are often part of the native message passing system,user speci�ed functions have to be executed in user space and the overhead of acontext switch, to run the function, delays the global operation.Another class of user-level systems that require remote execution of user (orlibrary) speci�ed code, are runtime systems. For example, Cilk's [9] runtime systemachieves load balancing through work-stealing. An idle node with no work choosesanother node at random and sends it a work-steal request. The \victim" nodeshould respond quickly with new work, or a negative acknowledgment. The goalsare to minimize the impact on working nodes and to get an idle node working againas quickly as possible.Another example is Split-C [16], which uses remote put and get operations totransfer data from one node to another. To avoid deadlocks, allow for synchroniza-tion, and guarantee atomicity, small handlers that are part of the Split-C runtimesystem, have to be executed on most message arrivals. Split-C is usually imple-mented on top of an active message layer. The arrival of an active message triggersthe execution of a handler that performs a small amount of work, such as incre-1



2 CHAPTER 1. INTRODUCTIONmenting a counter, and then sends a reply. It is crucial that this handler be invokedas soon as possible after the active message arrives.In all three examples (collective operations, Cilk, and Split-C), the user appli-cation or a third party runtime system speci�es a function to be executed when amessage arrives. Response time can be reduced if these functions are invoked im-mediately when a message arrives. Several methods have been devised to addressthis need.Active messages [100] transmit the address of a function to be executed onthe remote node, along with a small amount of data passed as parameters to thefunction. Most implementations poll for incoming messages and then jump to theaddress speci�ed in the message header. Handler invocation can be very fast. Singledigit microsecond latencies are reported in the literature. Latencies are much higherif the remote node is busy with a long computation and is not polling at the momentthe active message arrives.Intel's NX message passing system for the Paragon [73, 74] provides the functionshrecv() and hsend() to execute user de�ned handlers on message arrival or com-pletion of a send. The implementation is interrupt driven. After calling hsend(),the application continues to run. When the send completes, that is, the data hasbeen delivered to the remote node, the sending application is interrupted and thehandler speci�ed as a parameter to hsend() is run. Similarly, an hrecv() sets up abu�er and matching criteria for an incoming message and speci�es a handler. Whena message is deposited in the bu�er, the receiving application is interrupted and thehandler is run. The overhead to context switch to the handler is high compared tothe cost of receiving a message (about 300�s versus 14�s).In the Puma operating system [104, 105, 84] a portal event handler can beattached to any Puma portal. The user speci�ed handler is run after the messagehas been deposited in the portal. As with hsend() and hrecv(), this requires arelatively expensive context switch.As these examples illustrate, methods that provide the necessary functionalityexist. All of them have a performance impact on the receiving node and introducesigni�cant delays in the propagation of messages to other nodes.Consider the example of a broadcast where a single node sends information toall other nodes in the application. In a distributed memory architecture this canbe done using a fanout tree. The originating node sends a message to one of itsneighbors. The neighbor then passes the message to one of its other neighbors,while the originating node is copying the message to yet another node. This patterncontinues until all nodes have received the message.Each node has to receive the message and then send it on to the appropriatenodes in the fanout tree. Implementing a broadcast using basic point-to-point mes-sage passing operations has several drawbacks. If a node in the middle of the fanouttree has not completed its current task, its participation in the fanout will be delayedand the children of that node will have to wait, even if they are ready to receive thebroadcast data. On architectures where the network interface can only be accessed



3in supervisor mode, the necessary trap into the kernel and back to user level furtherincreases the cost for each message receipt and send.Using (non-polling) active messages, Intel's hsend() and hrecv(), or Pumaportal event handlers, the problem of delaying a broadcast by a busy intermediatenode can be avoided. There is a cost associated with this. When a message arrives,a context switch from the currently running application to the the user speci�edhandler and back to the application occurs. These interrupt driven context switchesare expensive, especially on modern RISC CPUs which have to save and restore alarge amount of internal context. Context switches disrupt cache and TLB contentsand impact the currently running application.The research proposed in this document explores ways to avoid these additionalcontext switches and thereby improve the performance of runtime systems and othercommunication primitives that require user speci�ed handlers.More speci�cally, we will explore methods to execute untrusted user code insupervisor mode, while the kernel is receiving a message. If all desired user speci�edfunctions were known a priori, they could be built directly into the operating systemkernel. On message arrival the kernel would then simply execute that function and,after that, return to the user level. On systems with a general purpose messageprocessor, such as the Intel Paragon, the coprocessor could execute the handlerwithout interrupting the user code that is running on the main CPU.Of course, it is impossible to anticipate all possible user handlers. Therefore, anapproach to let user applications insert code into the kernel at runtime is needed.Since this code is untrusted and executed in supervisor mode at the time a messagearrives, precautions must be taken to ensure the integrity of the kernel and otherapplications.In the next chapter we will look in detail at the cost of user level messagehandlers and the potential savings of running handlers in kernel mode. We willalso look at methods to safely execute untrusted code in the kernel of an operatingsystem. In Chapter 3 we discuss work that is related to this proposal. In Chapter 4we characterize our proposed solution and establish the criteria to measure andcompare our solution. Finally, in Chapter 5, we outline a statement of work and aschedule.



Chapter 2Key Ideas and ConceptsThe candidate's ideas and insights for solving the problem and any pre-liminary results he may have obtained [55].Based on the examples listed in the introduction, we de�ne a common model thatdescribes the execution path on a node. During a broadcast, each node receives amessage that is to be distributed to its children in the fanout tree. (The originatingnode is at the root of the tree and generates the message.) Each node identi�esits children when the broadcast message is received and then sends a copy of themessage to each child. Therefore, for a broadcast a node needs to be able to receive amessage, calculate the addresses of its children in the fanout tree, and send messagesto them.For a global sum, a node receives data from its children, sums it, adds its owncontribution, and sends the result to the parent. Instead of sum, the operation canbe any function, even one speci�ed by the user.The Cilk work-stealing example is, in principle, no di�erent than the one above.A node receives a work-steal request, checks its task queue, and sends a messageback to the originator. Checking the task queue, potentially removing an entryfrom the queue and sending a work order back, is slightly more complicated thandetermining the children in a fanout tree. Nevertheless, the basic principle remainsthe same. A node receives one or more messages, does some processing, and then,potentially, sends one or more messages. The routine performing the processing iscalled a handler.Most remote operations in the Split-C runtime system require the update of acounter. A node receives a message, increments or decrements a counter and sendssome data or an acknowledgment back to the originating node.We should note that this work concentrates on e�cient and quick processing ofexternal, asynchronous events. Another approach is to have the user program orthe runtime system occasionally check for new messages (polling). If a message hasarrived, the corresponding handler is called. This approach works especially well onarchitectures where the network interface is mapped into the user's address space.4



2.1. COST MODEL 5The routine that polls for new messages can read the message and call the handlerspeci�ed in the message. Assuming that the polling operation occurs with su�cientfrequency, this avoids costly interrupts and allows for rapid dispatching of handlers.On architectures where incoming messages generate interrupts and calls to theoperating system kernel are necessary to send messages, the main advantage ofpolling disappears. Furthermore, for operations such as a broadcast or work-stealingwhere the currently running thread does not directly contribute (it is doing some-thing else now), the response time is better and much more predictable, when aninterrupt driven implementation is used.There is another disadvantage of a polling implementation. Sometimes it isimpossible to poll frequently enough. For example, during a long computation in aBLAS library call, the application writer cannot insert polling operations.In Section 2.1 we will concentrate on a model that is common to the above exam-ples and many others in daily use on high-performance systems. This section shouldconvince us that executing a user de�ned handler in the kernel has performance ad-vantages. In Section 2.2 we will look at di�erent methods to execute untrusted codesafely inside an operating system kernel.2.1 Cost ModelInstead of examining each of the earlier examples in more detail, we will now con-centrate on a common model and study the events and associated costs on a givennode. Figure 2.1 depicts the principle graphically. The arrival of one or more mes-sages triggers a small amount of computation that results in zero or more messagesbeing sent.We now consider the events that take place on a node from the time a messagearrives until the handler completes and normal operation on the node is resumed.There are three cases.1. Architectures that require supervisor (kernel mode) privileges to access thenetwork interface.2. Architectures that map the network interface into the user's address space.3. Architectures that dedicate a general purpose CPU to the handling of com-munication.For each architecture we consider the cost of a handler running in user mode,including the necessary context switches, and compare it with the case where thehandler is executed in the kernel itself.2.1.1 Restricted Access to Network InterfaceOn systems of this type it is necessary to trap into the kernel to send or receivea message. The network interface uses physical addresses to access main memory



6 CHAPTER 2. KEY IDEAS AND CONCEPTS
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Figure 2.1: Common Events: A node receives one or more mes-sages, does some processing, and then, potentially, sends one or moremessages.on the node1. This simpli�es the design of the network interface, but requiresaccess in supervisor mode to prevent user applications from destroying or readingportions of main memory that must be protected. Protecting the network interfaceis also necessary to prevent sending of data to arbitrary nodes in the system. Thisarchitectural model is the most common. The Intel Paragon, even though it hastwo and three CPUs on each node, can be operated in this manner under the Pumaoperating system.Handler at User LevelFigure 2.2 shows the events that take place. We are interested in reducing the totaltime the user application is delayed: �delay. Also of interest is the response time(�resp); the time from message arrival until the handler begins to run.Table 2.1 summarizes the time intervals that characterize the events on a givennode. A message arrives at a node and causes an interrupt. The CPU switchesinto supervisor mode, saves the current context, and sets up the context for thekernel to run. This time interval is symbolized by �int. The kernel then proceedsto read the message from the network interface into a bu�er in main memory. Werepresent this time interval with �rcv. The value for �rcv varies with the length of1Some architectures, such as the iPSC/860, do not let the network interface access memorydirectly. Instead, the network interface consists of a send and a receive FIFO. A program hasto read and write the FIFO for each word transferred. Access to the FIFO registers has to becontrolled to prevent applications from reading data that is intended for another process.
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Figure 2.2: Execution Flow on a Node with Restricted Accessto the Network Interface: An arriving message interrupts thecurrently running user application. The kernel, in supervisor mode,receives the message and deposits it into a bu�er. A context switchto the appropriate handler occurs. To send messages, the handlerhas to trap into the kernel. A �nal trap into the kernel is necessaryto resume the interrupted user application.the message. Furthermore, for longer messages it is possible to engage the DMAunit and continue processing while the message is being received. For our analysiswe ignore this optimization and assume the CPU remains busy during the receiptof the message.After determining which handler to invoke, it takes �switch time to switch con-text and start running the handler. In the example of Figure 2.2 the handler doessome processing and then sends two messages. For each message the handler hasto trap into the kernel, �trap. The kernel will send the message (with the sameassumption about staying busy as for message reception). This takes �send time,which increases with larger messages. The time to return from the kernel trap backto the handler is �ret.When the handler �nishes, it traps into the kernel one more time to re-establishthe original context. The time it takes to return from an interrupt to the user levelprocess is �reti.



8 CHAPTER 2. KEY IDEAS AND CONCEPTSTable 2.1: Time Intervals of InterestSymbol Description�int Time to switch context and enter kernel mode on a interrupt�rcv Time to read a message from the network�switch Time to instantiate and switch to a user level handler�trap Time to trap into the kernel�send Time to inject a message into the network�ret Time to return from a trap�reti Time to return from an interrupt�delay Total time a user application is delayed�resp Shortest possible response time for a handlerHandler in KernelWe now examine the same example under the assumption that the handler can beexecuted while in kernel mode. Figure 2.3 shows the timing diagram.As before, the currently running user application is interrupted when a messagearrives. The node switches context at a cost of �int and enters kernel mode. Ittakes �rcv time to receive the message into main memory. Now, however, executingthe handler is a simple and cheap function call. The handler performs the sameoperations as before. When it sends a message, it simply calls the appropriatefunction in the kernel.This method saves the time of a context switch to the handler, a trap into thekernel to restore the originally running process, and the two traps and returns tosend the messages: �saved = �switch +�trap + 2(�trap +�ret)We will see in Section 2.2 that safely executing a user de�ned handler in the kernelcosts additional time. It is the goal of this work to establish how much overhead isimposed by the various techniques to execute handlers in kernel mode and comparethat to �saved and other bene�ts of this approach.The saving of two traps and returns, 2(�trap+�ret), is speci�c to our example.For handlers that require more traps into the kernel, the time savings would furtherincrease. For handlers with fewer kernel requests, the time savings could decreaseto as little as �saved = �switch +�trapMost handlers require at least one system call to send a reply.2.1.2 Mapped Network InterfaceSystems such as the ThinkingMachine CM-5 and the Meiko CS-2 have the capabilityof mapping the network interface into the user address space. This mapping requires
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Figure 2.3: Restricted Access to the Network Interface, Han-dler in the Kernel: An arriving message interrupts the currentlyrunning user application. The kernel, in supervisor mode, receivesthe message and deposits it into a bu�er. Immediately thereafter, thehandler starts running. To send messages, the handler simply callsthe appropriate kernel function. A return from interrupt resumesexecution of the user application.that the interface accept and interpret application relative virtual addresses or thatthe interface represents the endpoint of a virtual channel (FIFO) that can be readfrom or written to, a single word at a time. The advantage is that messages can bereceived and sent by user level applications with no expensive traps into the kernel.Handler at User LevelFigure 2.4 shows the 
ow of execution under these circumstances. While polling thenetwork interface on an architecture that allows user access to the interface is thesimplest way to low latency, we assume that an incoming message interrupts thecurrently running process. This interrupt is necessary to guarantee response timeand corresponds to the two other architectures described in this section.An incoming message interrupts the currently running process. The kernel in-vokes a generic handler that reads the message into a bu�er. The handler runsin non-privileged mode and accesses the network interface directly. Depending onthe message content, the generic handler then calls the appropriate speci�c handler.This is a simple function call and does not require the saving and restoring of a
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∆switchFigure 2.4: Mapped Network Interface: An arriving message in-terrupts the currently running application to activate the handler.The handler can receive and send messages without trapping intothe kernel. A single trap is necessary at the completion of the han-dler to return execution control to the interrupted application.context.The handler is the same as in the previous examples, except that no traps intothe kernel are necessary to send messages. A single trap at the end is needed torestore the originally running process.Handler in KernelFigure 2.5 shows the situation where the handler is executed in the kernel. Again,the arriving message triggers an interrupt and forces control 
ow into the kernel.The kernel receives the message into a bu�er and then simply calls the appropriatehandler. The handler does its processing and sends its two messages. A return frominterrupt leads back into user mode where the interrupted application resumes.Since the network interface is accessible from user mode, no savings are possibleby executing the handler in the kernel. However, a context switch to the handlerand a trap to restore the original context can be avoided. The saved time is:�saved = �switch +�trap
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Figure 2.5: Mapped Network Interface, Handler in Kernel:An arriving message interrupts the currently running process. Thekernel receives the message into a bu�er in main memory and callsthe handler without a context switch. The handler executes andsends its two messages. A return from interrupt resumes executionof the original user application.2.1.3 General Purpose CPU as a Message CoprocessorThe Intel Paragon as well as the Pentium Pro based Tera
op computer to be installedat Sandia National Laboratories have the ability to dedicate a general purpose CPUto the task of sending and receiving messages. The CPUs share the memory buswith the DMA units and the network interface. A snooping cache coherency pro-tocol ensures the integrity of data in the caches and main memory. In the messagecoprocessor mode, one CPU remains at the user level executing application code,while the second CPU remains in kernel mode polling the network interface. Thetwo CPUs use a mailbox in shared memory to exchange information. For this tobe e�ective, the second CPU cannot execute code in user mode. For our purposes,we let the second CPU interrupt the �rst one when it is time to run a handler.Figure 2.6 shows the execution 
ow.Handler at User LevelThe polling CPU detects the arrival of a message and receives it into main memory.Then it sends an interrupt signal to the user CPU to force a context switch. Theuser CPU executes the handler and, at the end, traps into the kernel to restore



12 CHAPTER 2. KEY IDEAS AND CONCEPTSthe original context. To send a message, a handler on the user CPU deposits asend request in a shared mailbox. The message coprocessor uses that informationto perform the actual send. Therefore, the processing performed by one CPU andthe message sending performed by the second CPU can overlap.
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Figure 2.6: General Purpose CPU: An arriving message is readinto a bu�er by the CPU dedicated to message transfer. It theninterrupts the CPU running the user application so it can perform acontext switch to the user level handler. Messages between CPUs aresent by exchanging information through a mailbox in shared memory.The dedicated CPU performs the actual send. A trap on the �rstCPU is necessary to restore the original context.Handler in KernelFigure 2.7 illustrates the situation with a dedicated CPU performingmessage passingas well as executing the handler. At no time is the currently running process on theuser CPU interrupted! Without considering the time savings derived from runningthe handler on a separate CPU, we get the following result:�saved = �int +�switch +�trap +�reti
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Figure 2.7: General Purpose CPU, Handler in Kernel: An ar-riving message is read into a bu�er by the CPU dedicated to messagetransfer. It then executes the handler. The user process running onthe other CPU is never interrupted!2.1.4 AnalysisIn all three architectural models a saving of at least �saved = �switch + �trap ispossible. Context switch and trap times on a RISC CPU such as the Intel i860 usedin the Intel Paragon, can be considerable. Saving and restoring the 
oating-pointpipeline state is especially costly, bringing the total cost to several tens of microseconds.We anticipate that most handlers are short and will execute quickly. In thesecases, some overhead to safely execute a handler in the kernel can be easily tolerated.However, if the overhead of executing a handler in the kernel becomes larger than�saved, it would be better to run the handler at user level.Figure 2.8 illustrates the relationship between a handler in the kernel and one atthe user level. The handler at the user level pays an up-front cost of at least �startupbefore it starts executing. (�saved varies with the handler and the method used toexecute a handler in the kernel. �startup is constant for a given operating system.)A handler running in supervisor mode has to be prevented from gaining privilegesthat it would not have if it ran in user mode. The methods used to prevent handlers



14 CHAPTER 2. KEY IDEAS AND CONCEPTSfrom gaining privileges, impose an overhead and make the kernel handler executemore slowly. The di�erences in execution speeds are represented by the di�erentslopes of the two curves. There is a crossover point after which the overhead ofexecuting the handler in the kernel exceeds the time taken by the user level handler.Therefore, if the amount of work a handler has to do exceeds a certain threshold,then it is better to run the handler in user mode.
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Figure 2.8: User Level and Kernel Level Handlers: A handlerin the kernel runs slower because of the overhead to ensure integrityof the system. A user-level handler pays a cost up front (�startup)but then executes faster because no memory access checks are neededfor example. The overhead to run in the kernel accumulates until itbecomes larger than �startup. At that point a handler should be runat user level.�startup is determined by the hardware and the operating system. The overheadof running a handler in the kernel is determined by the method used to ensure theintegrity of the system. In the next section we will look at various methods to runhandlers in the kernel. We �nd that each method has its own overhead, dependenton the amount of work (number of instructions) and the type of work (load andstore versus computation) a handler performs.In Figure 2.9 we give a hypothetical example of how the various methods ofrunning a handler in the kernel compare to running the handler at user level. Sincethe overhead characteristics for each method are dependent on the instruction mix



2.1. COST MODEL 15of the handler, an analysis would have to be done for each handler of interest.The varying slopes of each step of each curve represent memory accesses and CPUinternal instructions. The cost for the two types of operations are di�erent in eachmethod. Memory access patterns are also di�erent, giving each method a uniqueexecution pro�le for a given handler. Since the amount of work a given handlerperforms is bounded, it will be possible to determine the method that executes agiven handler the fastest.
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Figure 2.9: Example of Kernel Handlers: Depending on themethod chosen and the particular handler, the time it takes to do agiven amount of work will change. Choose the method that requiresthe least time for a given handler. �startup is the cost to get a handlerstarted in user space.The class of handlers described in the examples of Section 1 share two commoncharacteristics: they are short and use simple operations. It is possible that forthis class of handlers one of the methods described in the next section executesfastest most of the time. We will perform measurements under the Puma operatingsystem running on an Intel Paragon and the DOE Tera
op system to characterizethe execution pro�le of this class of handlers and �nd the method that is best suitedfor these handlers.



16 CHAPTER 2. KEY IDEAS AND CONCEPTS2.2 Kernel Embedded HandlersThe idea of executing user code (a handler) in kernel mode is not new. In Chapter 3we will discuss previous work in this area as well as other approaches to avoid costlycontext switches. In this section we discuss four software approaches for user levelhandlers in the kernel.All four methods deal with the problem of protecting the integrity of the systemfrom user code that is running inside the kernel with supervisor mode privileges.Speci�cally, a handler running inside the kernel must not be able to access memory ormemory mapped devices that it cannot access when run in user mode. Furthermore,privileged instructions that cannot be executed in user mode must not be executedby kernel embedded handlers. The running time of a handler also needs to berestricted to limit processor resource use on behalf of a user process. We call theserestrictions privilege restrictions. The methods described in the following sectionseither enforce these privilege restrictions, or ensure that a handler voluntarily followsthem.Common to all methods are the following steps. At code insertion time a userlevel handler is inserted into the kernel and associated with an event. When theevent occurs, the handler is executed inside the kernel without a context switchto user mode. During code insertion the kernel may perform a method-speci�cinspection and link step. The code is then stored inside the kernel where it cannotbe altered by the user. For each method, we describe the steps performed duringcode insertion and how the privilege restrictions are enforced or guaranteed duringexecution.The �rst method, software based fault isolation, comes in two 
avors: sandboxingand segment matching. Sandboxing forces all memory accesses to speci�c memorysegments called the sandbox2. Segment matching checks each memory access andreports an error if an attempt to access memory outside the sandbox is detected.The second approach is to trust a compiler to produce code that does not mis-use any of the privileges gained by running in supervisor mode. Code produced bythe trusted compiler is assumed to not violate the privilege restrictions. Softwarebased fault isolation and the trusted compiler approach have attracted much atten-tion recently with the advent of extensible operating systems such as the MIT Exokernel [28] and SPIN [7, 8].A third approach, interpretation, is currently out of fashion based on the ex-pectation that interpretation is too slow [86]. On the other hand, interpretation isenjoying a comeback in the form of Java, a byte code interpreted language. Java isused to create applets that are sent across the World Wide Web (WWW) [63, 36].Although not executed in kernel mode, applets cannot be trusted since origin andcontent are unknown at the time of execution. Applets can access �les on the client,connect to other hosts, and send mail with the same privileges as the user who down-2As Charlie Crowley points out, the term sanboxing is misleading to a parent. A playpen isused to keep children within a given space. A sandbox does that only when the children cooperate.



2.2. KERNEL EMBEDDED HANDLERS 17loaded the applet. This ability poses a safety hazard. Java bytecode is interpretedin software to protect against such unwanted activities of an applet.The fourth possible approach to embed a handler inside a kernel is code inspec-tion. If the kernel can formally verify that a given function does not violate therestrictions imposed on inserted code, then the kernel can execute that functionsafely.2.2.1 Software Based Fault IsolationSandboxing, the �rst form of software based fault isolation, derives its name from theidea of isolating a user program in a sandbox where it can execute safely without thepossibility of damaging anything outside the sandbox. Like hardware implementedmemory protection, sandboxing ensures that unsafe instructions cannot access mem-ory outside the sandbox. The idea is presented by Wahbe et al. [102], where theauthors consider write and jump instructions as unsafe. However, as Small andSeltzer [86] point out, read operations must also be regarded as unsafe, since somehardware devices change state when they are read. Of course, privileged instructionssuch as reset, instructions that change the memory access privileges, instructionsthat disable (the watchdog timer) interrupts, and illegal instructions must be pro-hibited. Sandboxed code has to be inspected during code insertion. There is noneed to trust the compiler to have done the sandboxing correctly.A sandbox consists of two memory segments. One for text and the other fordata. The segments are aligned such that the upper n bits, the segment index, of alladdresses in each segment are the same. During compilation, code is inserted beforeeach unsafe instruction to prevent access to locations outside the allocated segments.This code sequence forces the upper n bits of the unsafe instruction address to bethe same as the segment index. This prevents any reads and writes outside the datasegment and prevents jumps to locations outside the text segment.Figure 2.10 and Figure 2.11 illustrate examples of sandboxing a load and a jumpinstruction. The Intel i860 instruction to the left is sandboxed by the instructionsequence to the right. Five dedicated registers are used. Two are needed for loadand stores (rloc, rdata seg), two for jumps (rtarget, rcode seg), and one can be sharedby all sandboxed instructions (rmask). rmask can be shared if the segment index isof the same width for both the data and the code segment. The inspection that isperformed during code insertion has to ensure that the dedicated registers are notmodi�ed outside the sandboxing sequence.Segment matching is the second form of software based fault isolation. It isan extension of sandboxing and allows pinpointing the location of an o�endinginstruction and simpli�es debugging. Instead of simply forcing the upper n bitsto be the same as the segment index, the n bits are compared with the segmentindex. If they are the same, it is safe to execute the instruction. If not, execution
ow branches to an error handling routine that can output detailed information andabort the o�ending procedure. Figures 2.12 and 2.13 illustrate segment matching.



18 CHAPTER 2. KEY IDEAS AND CONCEPTS
ld.l off (ri), rd// o� is a register or a// 16 bit address o�set

(a) Normal Code
addu off , ri, rloc// Calc location (must not// be in a branch delay slot)and rloc, rmask, rloc// Clear segment indexor rloc, rdata seg, rloc// Set data segment indexld.l 0(rloc), rd// Use sandboxed address(b) Sandboxed CodeFigure 2.10: Sandboxing a Load Instruction in i860 Assem-bly: rmask, rloc, and rdata seg are dedicated registers the user codecannot use.bri ri

(a) Normal Code
and rmask, ri, rtarget// Clear segment indexor rtarget, rcode seg, rtarget// Set code segment indexbri rtarget// Use sandboxed address(b) Sandboxed CodeFigure 2.11: Sandboxing a Jump Instruction in i860 Assem-bly: rmask, rtarget, and rcode seg are dedicated registers the usercode cannot use.To prevent self-modifying code, two segments are needed. One for data (static,heap, and stack), and one for the code. Load and store instructions are restricted tothe data segment, while branch instructions have to stay in the code segment. Notethat branches into any part of the sandboxing code are possible and the sandboxingcode has to be written in such a manner that none of the dedicated registers can becompromised. Both software based fault isolation techniques require �ve dedicatedregisters. (Under certain conditions it is possible to save one register in the segmentmatching case.) On a RISC CPU with 32 general purpose registers, this is nota big problem. On a CISC architecture, such as the Pentium Pro, with only 8general purpose registers, the techniques can still be used, albeit at the cost of slowerperformance. In the case of the Pentium Pro which has segmentation registers,it would be interesting to compare the cost of using segment registers instead ofsoftware based fault isolation.
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ld.l off (ri), rd// o� is a register or a// 16 bit address o�set

(a) Normal Code
addu off , ri, rloc// Calculate target addressand rmask, rloc, rtmp// Retrieve segment indexxor rtmp, rdata seg// Comp with data seg indexbc error// report errorld.l 0(rloc), rd// Safe: execute load (store)(b) Segment Matching CodeFigure 2.12: Load Instruction With Segment Matching in i860Assembly: rmask, rloc, and rdata seg are dedicated registers theuser code cannot use. rtmp is a temporary register that can be usedoutside the segment matching code.The authors of [102] report an average fault isolation overhead of 4:3% in avariety of benchmarks, isolating writes and jumps only, and allowing reads from anylocation of mapped memory. This agrees with the reported 3% to 7% in [96].The insertion of the sandboxing or segment matching instructions before eachunsafe instruction can be done at compile time or at the time the code is insertedinto the kernel. In the former case, the kernel has to ensure that the function hasbeen properly sandboxed. Wahbe et al. present an algorithm to do that [102]. Thealgorithm ensures the following:� All jumps, PC relative or absolute targets, are within the code segment.� Register indirect jumps are sandboxed and use the dedicated register rtarget.� All direct memory accesses are to addresses within the data segment.� Register indirect memory accesses are sandboxed and use the dedicated regis-ter rloc.� The handler does not contain privileged or illegal instructions.� None of the dedicated registers (rloc, rdata seg, rtarget, rcode seg, rmask) are up-dated outside the sandboxing codes.To limit running time, a watchdog timer is used. The timer is set at the time thehandler starts executing and terminates the handler if it goes o� before the handlerhas �nished.
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bri ri

(a) Normal Code
mov ri, rtarget// Move target into dedicated regand rmask, rtarget, rtmp// Retrieve segment indexxor rtmp, rcode seg, r0// Comp with code seg indexbc error// report errorbri rtarget// Safe: execute jump(b) Segment Matching CodeFigure 2.13: Branch Instruction With Segment Matching ini860 Assembly: rmask, rtarget, and rcode seg are dedicated registersthe user code cannot use. rtmp is a temporary register that can beused outside the segment matching code.2.2.2 Trusted CompilerAn approach that is currently being investigated as part of the SPIN project is totrust the compiler to generate code that obeys the privilege restrictions. There aretwo possibilities for a kernel to trust the compiler. If the compiler is a stand-alonetool, as is usually the case, it has to \sign" the generated binary in such a mannerthat the kernel can be sure that only the trusted compiler could have generated thisparticular binary. This requires code in the kernel to verify the signature.The second method is to make the compiler part of the operating system. Oneproblem with the trusted compiler approach is that that the amount of trusted codegrows signi�cantly. The size of the Puma kernel, for which we are considering kernelextensions, is about 75 kB, while the size of a typical compiler is usually measuredin mega bytes. Furthermore, the runtime systems of high-level languages can belarge. For performance reasons, the runtime system has to stay resident in physicalmemory taking up valuable space.In some sense, all operating systems trust the compiler that was used to compilethem. With the trusted compiler approach the operating system places an additionalkind of trust on the compiler. The operating system now assumes that the compilernot only produces correct code, but also code that does not violate the privilegerestrictions. It is up to the compiler to reject code that might access memory thatis accessible in kernel mode but not user mode.For this approach, code insertion consists of linking the code into the kernel and,depending on whether the compiler is part of the operating system or not, verifyingthe identity of the code producer.



2.2. KERNEL EMBEDDED HANDLERS 212.2.3 Kernel Embedded InterpreterPerhaps the simplest approach, at least conceptually, is interpretation of the usercode. A kernel embedded interpreter can validate each instruction before executingit and easily guarantee that the privilege restrictions are obeyed. Time bounds canbe enforced by simply counting the number of instructions executed (weights couldbe assigned to each instruction if execution times vary widely).Interpretation has been successfully employed in a variety of situations [66, 61,36], but is generally considered to be slow or only applicable if the input language canbe su�ciently restricted. For the handlers anticipated, we believe that interpretationis ideal. The handlers are small and perform simple tasks. It should be possible togather the most often used constructs and sequences into a virtual machine whichcan be optimized to execute e�ciently [76, 78]. Then, using indirect threaded code ordirect threaded code techniques, build an extremely fast interpreter [6, 21, 49, 31].These techniques have been used to implement the Forth language [79]. The B(a predecessor to C) compiler for the PDP-7 generated threaded code [81] as didthe Fortran IV compiler for the PDP-11 [6]. The object oriented language Actoris based on token threading [23]. QuickBasic 4.0 is based on a threaded P-codeinterpreter [101]. The handler code is threaded during code insertion.It is one of the goals of this work to design a virtual machine that is generalpurpose, yet highly optimized to the interpretation of code that is produced whencompiling handlers.2.2.4 Code InspectionUnder certain circumstances it is possible to inspect a binary image and guaranteethat it obeys the privilege restrictions. A control 
ow analysis must be performedto ensure that no branches outside the handler take place. In order to limit therun time, loops are required to have �xed starting and ending values and backwardbranches (and register indirect branches) are disallowed. Register indirect memoryaccesses have to be done by a routine within the OS that veri�es that the access islegal. Essentially, register indirect memory accesses are interpreted [20].We feel that the restrictions which would have to be placed on code so it can beinspected (in �nite time!) are too limiting for the types of handlers we anticipate.For this reason, we will not consider code inspection any further.A variation of this is proof carrying code [68]. The code to be inserted carriesa proof that it does not violate the policies set forth by the executor (the kernel inour case). The proof should be easy to verify and guarantee that the code is safe toexecute. This research is still in its very infancy, but might be applicable to smallhandlers.



Chapter 3Related WorkReference to and comments upon relevant work by others on the same orsimilar problems [55].The high cost of protection domain crossings, especially from user-level intothe kernel, has been well documented [65, 71, 2, 62]. Often, a mismatch betweenmodern microprocessor architectures and the changing needs of newer operatingsystems is cited as the main reason. Hardware, as well as software solutions, havebeen proposed to alleviate the problem [22, 14, 43, 19, 54, 13, 56]. While someof the achieved improvements are signi�cant, there is still a cost associated with aprotection domain crossing. If that cost is high enough to cover the overhead ofsafely executing untrusted code in the kernel, then kernel extensions have merit.Otherwise, up-calls to the user level are more appropriate.The research proposed builds on work done in several areas. In Section 3.1we investigate several existing methods to send a message to a remote node andlet a user-speci�ed handler execute on the remote node when the message arrives.Essentially, all su�er from too high overhead or in
exibility. In Section 3.2 we lookat operating systems that allow user processes to extend the kernel by insertingcode. All of the extension methods described in Section 2.2 are used in one form oranother. The goal of this research is to compare them and �nd the one that is bestsuited for our applications.In Section 3.3 we look at two examples where hardware is used to solve theproblem of high overhead in the start-up and execution of remote handlers. Sincecode is inserted into the kernel at runtime, research in the area of dynamic codegeneration is also of interest to us. We brie
y discuss it in Section 3.4. Finally, weexplore several areas related to interpreters in Section 3.5.3.1 Remote HandlersRemote handlers are used extensively in client-server applications and network �lesystems. With the advent of high-speed and low-latency networks it has become22



3.1. REMOTE HANDLERS 23apparent that the software overhead required to transfer messages has to be reducedsigni�cantly to take advantage of the new hardware technologies. We look at activemessages, Intel NX, and Puma portal event handlers in MP systems, as well asmethods employed in workstation environments.3.1.1 Active MessagesActive messages were introduced in [100] and have enjoyed considerable atten-tion [98, 103, 80, 57, 89]. Especially on the CM-5, where the network interfacecan be mapped into the user's address space, active messages have a very smalloverhead compared to traditional message passing. This translates into very lowmessage latencies. However, there are some characteristics that make active mes-sages unsuitable as a general solution to the problem of fast responding handlers.For example, bandwidth is adversely a�ected by the necessity to always run a han-dler. A data transfer method that moves data without invoking a handler will getbetter bandwidth.Most active message implementations use polling to achieve the low latenciesreported in the literature. Adjusting the polling frequency introduces a tradeo�between fast response time and amount of overhead attributed to unneeded polling.In some cases polling complicates a program and in others it is not appropriate. Forexample, in a compute intensive application that spends much of its time in librariessuch as the BLAS, polling can only occur between calls to the library; hence, handlerresponse time is poor. Interrupt driven implementations of active messages su�erfrom context switch overhead.Originally, active messages were designed for communication among the nodes ofthe same application. Sending the actual start address of a function combined withnon-existant protection and recovery mechanisms, make active messages unsuitablefor use between arbitrary applications, servers, and machines.A new organization and application programming interface remedies the short-comings of the original active message design [58], and tries to bring active messagesinto the mainstream. In principle, the receive part of an active message endpointas described in [58] resembles a single block Puma portal with an attached handler.The handler is executed when the data has been deposited into the portal. A singleblock Puma portal consists of a memory descriptor specifying the start address andthe length of a memory segment where data is to be stored or retrieved from.This new model addresses security and 
exibility concerns but only o�ers thetraditional choices to handle incoming messages: polling or interrupt driven withthe handler in the user's address space.3.1.2 Intel NXNX is the message passing system used on the Intel Paragon and its predecessors [73,74]. The hrecv() function behaves much like an ordinary receive with the exception



24 CHAPTER 3. RELATED WORKthat, upon message arrival, a user speci�ed handler is invoked. The mechanism isinterrupt driven and a full context switch to the handler occurs on message reception.To measure performance, we used a simple benchmark that posts an hrecv()and then waits for a global variable to change. The handler that is invoked byhrecv() increments this variable and returns. (This is a measurement of �resp.)Averaged over 10000 trials, we measured an invocation time of about 300�s. Thesame measurement for an irecv(), a non-blocking receive without a handler, yields14�s. Figure 3.1 shows the pseudo code of our benchmark.In both cases the receive is pre-posted and the receiving node spins in a tightloop at user level, waiting for the incoming message. The incoming message causesan interrupt and the operating system kernel reads the zero length message fromthe network.To process an hrecv(), the kernel switches context to the handler, executes it,and does another context switch to the original user program. The handler sets theglobal variable gotit to TRUE. Inside the loop, the test program checks the globalvariable to determine when the handler has run. While the test program spins insidethe loop, it produces a series of time stamps. Once outside the loop, it is easy todetermine the time stamp from just before the interrupt took place. The gap to thenext time stamp is larger (> �) than the gaps measured in successive, uninterruptedloop iterations. The constant � is larger than the overhead of a clock() functioncall, but less than the interrupt time: (clock()t2 - clock()t1) < � < (�int+�reti)In the case of an irecv(), the kernel simply returns to the user level. Insidethe loop, the test program uses msgdone() to know when the message has arrived.Again, a larger gap between time stamps reveals the one just before and the one justafter the interrupt has been taken. The high cost of hrecv() makes it impracticalto use in the contexts proposed for this research.3.1.3 Puma Portal Event HandlersPuma [105, 84] is an operating system speci�cally designed for high-performanceMP architectures. On each node, the systems consists of a minimal kernel (thequintessential kernel), a process control thread (PCT) which is a trusted user-levelprocess that establishes the policies on the node, and the libraries linked with eachapplication.Puma portals are openings into the applications's address space. Data struc-tures, shared between the kernel and the user determine where incoming messagesare to be deposited. The shared data structures consist of a portal table, matchinglists, and memory descriptors. With the appropriate combination of these basicbuilding blocks, a user-level process can describe the actions the kernel is to per-form upon arrival of a message. Portals allow the construction of most higher-levelmessage passing protocols in user space without costly memory-to-memory copies.When a message arrives, the data and its header are placed into memory ac-cording to the application's speci�cation in the portal structures. If a portal event
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main()f loop fif node 1 is ready thenbreakgsend zero length msg to node 1g (a) Node 0

handler()f gotit = TRUEgmain()f gotit = FALSEhrecv(handler, . . . )t1 = t2 = clock()loop ft1 = clock()if gotit thenif t2 + � > t1 thent2 = clock()breakt2 = clock()if gotit thenif t1 + � > t2 thent1 = clock()breakgif t1 > t2 thentime = t1 � t2elsetime = t2 � t1g (b) Node 1Figure 3.1: hrecv() Benchmark: Measure the time from messagearrival until start of the handler (�resp).



26 CHAPTER 3. RELATED WORKhandler has been installed, then the kernel will transfer control to a user-level masterhandler. The master handler can be replaced by the application and is responsibleto dispatch events to event handlers. This is similar to active messages, except thatthe data already resides in memory. Invoking the handlers requires a context switchfrom kernel to user level.3.1.4 Workstation EnvironmentsWorkstation networks and interfaces are approaching the performance characteris-tics of MP systems [93]. However, network protocols have not kept up with thistrend [1]. Illinois Fast Messages [72] and U-net [99] are two examples of approachesto reduce the software overhead.Fast messages (FM) recognize the need of overlapping communication with com-putation, precise control of the hardware involved (busses and network interface),and e�cient bu�er management. Using Myrinet interfaces, this approach goes asfar as replacing the program in the network interface coprocessor (LANai) with onethat is speci�c to the FM protocol. Data is moved directly into user space, avoidinga costly memory-to-memory copy. The protocol further assumes a reliable networkand puts the burden of message content veri�cation (checksums) onto higher levellayers. (Measurements under Amoeba indicate that user level protocols incur onlysmall additional costs, but provide increased 
exibility [70].)The U-net approach is to map the network interface into user space and avoidprotection domain crossings for message transfers. To send or receive a message,the kernel does not have to be invoked.Both FM and U-net lower message passing latencies, but do not directly addressthe problem of handler response time. In both cases, a polling user application canquickly respond to user messages. A general, interrupt driven solution still has ahigh cost associated with it.3.2 Extensible Operating SystemsAn extensible operating system lets an application apply certain customization totailor the operating system's behavior to the needs of the application. Applicationsrunning on personal computers have been taking advantage of the non-existing pro-tection mechanisms in MS-DOS and the Apple Macintosh operating system to ex-tend the operating system. For example, intercepting keystrokes and mouse events,as well as writing to screen memory directly is possible. These simple operatingsystems are not able to protect themselves or other applications from buggy ormalicious user code.Many variants of the Unix operating system allow a trusted user (the systemadministrator) to modify the running system by adding new device drivers and kernelservices such as di�erent �le systems. Flexibility is lost, since the applications cannotdynamically adjust the system to their needs anymore. Furthermore, the operating



3.2. EXTENSIBLE OPERATING SYSTEMS 27system still has no way of verifying that the extension will not harm the system orother applications.Current research in extensible operating systems tries to address these issues.The goal is to let applications safely modify system behavior. For example, itshould be possible for an application to specify its own memory page manager. Thekernel would call this page manager when the system needs to reclaim memorypages currently allocated to this application. The application speci�c page managercan then decide which pages should be given up. For this to be e�cient, the pagemanager needs to reside inside the kernel, so no expensive cross-domain calls arenecessary to evict memory pages. The page manager has to be isolated so it cannot disrupt other kernel services or wreck havoc with the page handling of otherapplications.Several recent systems use the methods presented in Section 2.2 to enable suchextensions. In this section we look at SPIN, the MIT Exo kernel, GLUnix, VINO,and �Choices.3.2.1 SpinSPIN [7] is an extensible operating system that allows kernel extensions, so calledspindles, to be inserted dynamically. Spindles as well as SPIN itself, are written inModula-3, a type-safe object oriented programming language. The use of a type-and pointer-safe language prevents spindles from calling services inside the kernelthat have not been speci�cally exported. The language makes it also impossible toaccess memory that is not part of an object to which the spindle has been givenexplicit access.As long as the Modula-3 compiler is trusted to implement the language speci�-cation faithfully, and only spindles generated by this compiler are accepted, SPINis safe from malicious code. The compiler runs at user level and is the only processthat is allowed to insert spindles into the kernel. Only spindles generated at runtimecan be inserted into the kernel. This eliminates the need to cryptographically sign aspindle, but has the drawback that the time to compile and optimize a spindle hasto be expended for each spindle insertion. Dynamically linking a spindle into therunning kernel also takes time. It is assumed that the time savings and 
exibilityof having the spindles execute inside the kernel compensate for this overhead.3.2.2 Exo KernelThe MIT Exo kernel [28, 27, 29] is an extreme approach to operating systems design.It attempts to lower the operating system interface to the hardware level, eliminatingall abstractions that traditional operating systems provide, and concentrating onmultiplexing the available physical resources.All work traditionally done inside the kernel to provide abstractions, such asmemory mapped I/O and complex thread packages, is moved into application-level



28 CHAPTER 3. RELATED WORKsoftware layers. The kernel simply allocates, deallocates, and multiplexes physicalresources, for example memory, time-slices, access to I/O devices, disk storage,etc. This is similar to the Puma kernel approach, where many of the abstractionsare pushed into the PCT (Process Control Thread) or user-level libraries. TheExo kernel takes this to an extreme, since all abstractions are removed from thekernel and no privileged user-level processes, such as the PCT, are allowed; everyabstraction is provided by the application (usually in the form of a library). Thisallows applications to customize abstractions, choose the best �tting one amongseveral, or circumvent libraries that are not e�cient enough for the task at hand.In principle, there should be fewer traps into the kernel, since most of the OSfunctionality is at the user-level. The traps should also be cheaper, since there arefewer services to dispatch inside the kernel. For cases such as TLB miss handling,user-level code can be inserted into the kernel. A combination of code inspectionand sandboxing is used to insert untrusted user code safely into the kernel.3.2.3 GLUnixThe Global Layer Unix (GLUnix [97]) system uses software-based fault isolation(SFI) to move operating system functionality into user level libraries. User applica-tions are linked with the operating system libraries, and system calls are convertedto function calls into these libraries. Proponents of GLUnix claim that the cost ofSFI is o�set by not having to trap into the kernel for every system call.The GLUnix libraries will provide a single system view of a network of work-stations, even though the individual workstations run a standard operating system.This approach is limited by the functionality exported by the underlying operatingsystem. Furthermore, to send and receive messages, the services of the operatingsystem kernel are required. Since the goal of GLUnix is to use vendor suppliedoperating systems and use them unchanged by building additional functionality ina layer that sits on top of the operating system, there is no possibility of insertinguser handlers into the kernel, unless the underlying operating system supports that.3.2.4 VINOThe VINO kernel [85, 82, 83] is designed as a platform for database managementsystems. From the outset, VINO is designed to let applications specify the policiesthe kernel uses to manage resources. A further goal is to make kernel primitivesaccessible to the user level. For example, synchronization functions the kernel uses,might be useful to applications as well.Applications establish a resource management policy by inserting a graft intothe VINO kernel. Grafts are written in C or C++. The compiler inserts rangecheck instructions for all memory accesses, similar to segment matching in Wahbeet al. [102], and ensures that no privileged instructions, such as the disabling of inter-rupts, are issued. The generated code is then marked with an encrypted �ngerprint(signature) that is veri�ed by the kernel during code insertion.



3.3. HARDWARE SOLUTIONS 29Since grafts are used to implement policies, access to kernel functions and data,for example locks, is a must. To prevent a graft from holding a lock inde�nitely,transaction techniques are used. If a graft has to be aborted because of an error orbecause it ran too long, its actions can be undone and locks held by the graft canbe released.As in SPIN, some trust is placed into the compiler. To avoid a type-safe language,software based fault isolation is used to protect against illegal memory accesses.3.2.5 �ChoicesIn the �Choices operating system [11, 92] so called agents can be inserted into thekernel. Agents are written in a simple, 
exible scripting language similar to TCL,and are interpreted. Agents batch a series of system calls into a single procedurethat requires only one trap into the kernel to be executed. Agents use existing kernelservices and do not extend the functionality of the kernel or provide services thatare not available at user level. Agents are a simple optimizations to eliminate theoverhead of several system calls.Methods to safely execute untrusted code in a privileged environment are com-pared in [86]. Among the methods chosen is interpreted TCL because of its mentionin the �Choices papers. As might be expected, TCL's execution speed is orders ofmagnitudes slower than some of the other methods. Therefore, the authors claimthat interpretation in general is too slow. However, TCL interpreters are not op-timized for speed. Furthermore, with appropriate restrictions to the language andapplication of advanced interpretation techniques, it might be possible to speed-upinterpretation considerably.3.3 Hardware SolutionsThere are many projects that use hardware to make context switches and message re-ception faster. The Stanford FLASH multiprocessor and at the MIT J-machine aimto provide fast hardware to accommodate many di�erent message passing paradigmsand use software handlers to act on incoming messages.3.3.1 Stanford FlashIn the Stanford FLASH multiprocessor architecture [40, 53, 39] each node containsa custom node controller called MAGIC. MAGIC is located between the networkand the CPU and memory. It consists of several queues and a protocol processor.The protocol processor has instruction and data caches, independent of the mainprocessor on the board.The protocol processor uses physical addresses to access main memory. Trans-lation of virtual addresses and the necessary veri�cations are performed when ad-dresses are transferred from the main processor to the protocol processor inside



30 CHAPTER 3. RELATED WORKMAGIC. This gives the protocol processor the ability to transfer data to and frommain memory very e�ciently without a�ecting the operation of the main processor.That is, no interrupts or context switches occur on the main processor when newmessages arrive. The design is very 
exible and allows the implementation of a widevariety of protocols inside MAGIC.MAGIC handlers directly control the message passing behavior of a node. Erro-neous handlers executing on the protocol processors can corrupt data and crash thewhole machine. Therefore, handlers have to be created and validated with the samescrutiny as the hardware in the system, making it impossible to run user-createdhandlers on the protocol processor. It might be possible to run the R-code inter-preter on the protocol processor. This would allow users to submit code that runs(interpreted) on the protocol processor.3.3.2 J-MachineThe MIT J-machine [17, 69] combines a general purpose CPU with a network con-troller. (Similar to the nCUBE processors [67, 24].) Upon arrival of a message ona J-machine node, the CPU dispatches a handler to process the message. The han-dlers are �ne-grained threads. Dispatching is done by the hardware and, therefore,extremely fast (less than 1�s).In contrast to the Stanford FLASH project, there is only one CPU to handlemessage tra�c and user applications. On the other hand, user applications andmessage processing are tightly integrated, and applications provide the threads tohandle incoming messages. From an applications point of view, this makes the J-machine more 
exible, since the protocol processor code in the MAGIC cannot bechanged by an ordinary user.3.4 Dynamic Code GenerationUsually, executable code is generated by a compiler before the executable is loadedand run. A technique called dynamic or runtime code generation, delays compila-tion until the executable is already running. For example, a function to perform amatrix multiply is not compiled into its �nal form until the sizes of the two matricesto be multiplied are known. The sizes can be expressed as constants in the arith-metic routine and the compiler can perform certain optimizations that would notbe possible if the sizes were unknown and had to be expressed as variables. Evenwith the overhead of the compilation step at runtime, it is sometimes worthwhileto consider dynamic code generation, especially in the case when a function will beexecuted often, after it has been compiled once [46, 44, 45, 47, 60, 30, 26, 41, 59, 25].Inserting code at runtime into the kernel is a form of dynamic code generation.The application can manipulate the R-code image, or even compile a higher-levellanguage into R-code, before it inserts the R-code image into the kernel. For ex-ample, a broadcast function could hard-code the destination nodes into the R-code



3.5. INTERPRETERS 31image before it is inserted into the kernel. The image would be slightly di�erent oneach node, but would not have to do any computations to determine the destinationsof a broadcast.3.5 InterpretersBecause of their simplicity, interpreters are often employed early on as a proof of con-cept, to be later replaced by compiled languages. Nevertheless, some applications,such as the BSD packet �lters (Subsection 3.5.4) and Java applets (Subsection 3.5.5)over the world wide web (WWW), exploit interpreter characteristics in areas wherespeed matters.First, we look at techniques that have been developed to speed-up interpretation(Subsection 3.5.1). Since most interpreters use a (virtual) stack machine to executethe programs, we look at work done on implementing stack machines in Subsec-tion 3.5.2. Many of the interpretation techniques made their �rst appearance inForth systems. We look at Forth in Subsection 3.5.3. In Subsection 3.5.4 and 3.5.5we look at uses of interpreters in the BSD packet �lter and in Java.3.5.1 Interpretation TechniquesInterpretation has several desirable characteristics. Interactive systems bene�t froma quick turn-around time and the extensibility of the interpreters themselves. Forexample, interpretation of commands can begin as soon as the user starts typing.There is no edit, compile, test cycle. Some interpreters can be extended by the user.Forth, for example, allows the de�nition of new keywords by the user. These newkeywords are integrated into the running interpreter and can be used like any otherkeyword prede�ned by Forth.Interpreters are relatively easy to write (when compared to a compiler) and areeasy to port. Furthermore, intermediate code representation, bytecode for exam-ple, makes \precompiled" executables very small. Often much smaller than thecorresponding source and even a compiled binary.The only real drawback usually is execution speed. Simple interpreters are oftenten to hundred times slower than the same program written in a language such asC or Pascal and executed as a native binary. Several techniques exist to make inter-pretation fast. One of the earliest techniques is Bell's threaded code technique [6].The idea is to preprocess the code and convert language statements into subroutinecalls. In principle, this reduces the execution overhead of an interpreter to one ortwo assembly instructions per interpreted statement.Indirect threaded code [21] adds a level of indirection and makes the techniquemore portable. Kogge [49] reviews threaded code techniques and compares them. He�nds that performance penalties for threaded code versus direct assembly coding areabout 1.2:1 for minicomputers. A paper by Paul Klint [48] compares interpretationtechniques. He �nds that instruction fetch time of direct threaded code is faster



32 CHAPTER 3. RELATED WORKthan indirect threaded code. Both threaded code techniques are much faster than atraditional interpreter that uses opcode tables. As the complexity of the interpretedinstructions increases; i.e. the subroutines that implement the instruction becomelarger and more complex, the less relevant the instruction fetch time becomes.Cint [18], a C language interpreter, shuns threaded code techniques, claimingthey are machine dependent. Instead, Cint relies on a minimal (RISC) virtualmachine for speed. The instruction set consists of 49 executable instructions and 14pseudo-operations. The overhead of executing a C program under Cint compared tothe execution of a compiled binary, is considerable: On average 29 times slower on aVAX-11/780 and 36 times slower on a Sun-3/75. To avoid the machine dependencyproblem, Ertl [31] uses a feature of GNU gcc [90] to generate a threaded codeinterpreter from a C language source. GNU gcc extends the C language and allowslabels to be treated as values. Together with GNU gcc's computed goto statementit is possible to write a threaded code interpreter without resorting to machinelanguage. The interpreter is portable to any system that supports GNU gcc.For our research we will use threaded code techniques. If possible, we use theC language extensions of GNU gcc to remain as portable as possible. At the sametime we will adapt and modify R-code so that an interpreter for it can be smalland simple (like Cint), and keep the amount of computation done per interpretedinstruction high, so the instruction fetch time can be amortized [78].3.5.2 Stack MachinesIt is easy to map an arithmetic expression onto a stack-based virtual machine andthen evaluate it. Many interpreters, speci�cally Forth, are built on stack-basedvirtual machines. To speed up execution, some stack-based designs have been im-plemented in hardware [51]. Microprocessors have been built for the direct execu-tion of Forth [38, 64] and are being designed for Java [52]. A large body of the-oretical work on how to e�ciently execute stack-based programs on register-basedCPUs [37, 32, 34, 33, 75] and on optimizing code for stack machines [50, 15, 10]exists. The R-code interpreter will be stack-based and the techniques for optimizingstack-based programs and to speed up stack-based interpreters will be applied.3.5.3 ForthForth [79] is a stack-oriented language. It was �rst used to control telescopes andprocess astronomical data. Since then, it has found a wide spectrum of uses, butis still often used in embedded systems. For example, the boot monitor of Sunworkstations uses Forth to interact with the system administrator.Forth interpreters are very fast. One reason for this is that Forth is relatively low-level and gives the programmer many opportunities to optimize stack operations.Other reasons are the innovative interpretation techniques that �rst appeared inForth. The �rst Forth system employed indirect threading as later described in [21].



3.5. INTERPRETERS 33Forth allows a user to de�ne new words that are dynamically integrated into theinterpreter. New words can be accessed and executed as fast as the builtin words.Therefore, it is very easy and e�cient to customize the interpreter to speci�c tasksat hand.We considered to make Forth the language that is used to interpret code insidethe kernel. We decided against it, because many features of Forth are geared atinteractive use and I/O. Stripping these from Forth would leave a language verysimilar to R-code. Since we want to optimize R-code for fastest possible interpre-tation and a well suited target language for a C compiler, we decided to start fromscratch. R-code has to evolve and, in its �nal form, may not look like Forth at all,even if we had started there.3.5.4 BSD Packet FilterThe BSD packet �lter originated in the Xerox Alto. The motivation, implementa-tion, and performance on various BSD machines is described in [66]. Packet �ltersare written in a simple stack-based language and inserted into the running kernel.For each incoming data packet, the �lters are executed until one accepts the packet.There are no branch instructions and only a rudimentary set of operations. Wordsat constant o�sets in the packet can be examined using comparisons and the threeboolean operators AND, OR, and XOR. No other arithmetic operations are available.Interpretation was chosen to make it possible to move packet �lters from userspace, with the associated context switches and kernel traps, into the kernel, savingthat overhead. This enhanced performance considerably. The interpreter ensuresthat only words inside a packet are accessed and aborts faulty handlers (after a stackunder
ow for example). In general, though, security is not enforced. Any �lter canaccept any packet.An improved version of the packet �lter is presented in [61]. The instruction sethas been extended and now includes arithmetic operators such as add, sub, mul,and div, as well as conditional branch instructions. The pseudo machine is nowregister based. It consists of an accumulator, an index register, a scratch memorystore, and an implicit program counter. The authors claim that such a machine canbe simulated faster on today's register-based RISC architectures. The performancegain over the earlier implementation seems to validate this claim. However, it maybe that the language used in the �rst BSD implementation is just too simple. Forexample, it is not possible to read a word from the packet, mask certain bits, andthen use this intermediate result several times in comparisons. Instead, the �rstBSD implementation needs to read the same word every time and has to redo anymasking done before. The newer implementation can easily store the intermediateresult and reuse it when necessary. Therefore, the claim that a stack-based virtualmachine is not as suitable as a register-based virtual machine for modern CPUs isnot substantiated.Performance of both BSD packet �lters degrades as more �lters are added, since



34 CHAPTER 3. RELATED WORKeach is executed sequentially and independently. With several sessions active at thesame time, many �lters that di�er only minimally (in matching the destination portnumber for example), have to be installed. This problem is addressed in [107]. Thenew �lter mechanism is called MPF (Mach Packet Filter) and is an extension of theregister-based packet �lter [61].To achieve scalability in the presence of many packet �lters, MPF o�ers a newinstruction that is reminiscent of a C switch statement. It replaces an instructionsequence in the register-based packet �lter that is used to dispatch among variousprotocols. MPF collapses the new instruction present in all �lters into a single, fast,dispatch routine. Therefore, no matter how many �lters are present, the commondispatch code is executed only once. Another reason this is faster, is that severalinstructions can be replaced by a single virtual machine instruction. This lowers theoverhead of virtual machine instruction dispatch.3.5.5 JavaJava [63, 36] is an interpreted, object-oriented language with a syntax similar toC and C++. Recently it has attracted much attention through its use in WWWbrowsers. Applets, written in Java and translated into bytecodes, are made availableon WWW servers. A client, the WWW browser, fetches the applet and executes iton the client side. Since the execution is local, applets can create graphical e�ects,for example, without consuming large amounts of bandwidth to the server.Applets can be written by anybody and made available anywhere in the world,and cannot be trusted. The browser on the client side interprets the applet andmonitors disk accesses, network communication, and other activities of the applet.An interpreted language is ideal for this purpose, since any desired restrictions canbe enforced by the interpreter.Transferring untrusted applets into an environment in which execution couldcause trouble is similar to the idea of executing user code inside an operating systemkernel. Actual transfer from one node to another in an MP system is not necessary,since all nodes with the same application have copies of the same executable. Also,the kernel knows the user process's owner. (This does not mean user code can betrusted.) Java is a general-purpose high-level language. It o�ers many features thatare not necessary for kernel embedded handlers. While R-code should be general-purpose, it does not need to be able to deal with an interactive user and do �le I/O,for example.



Chapter 4Proposed SolutionA statement or characterization of what kind of solution is being sought [55].Among the four possible ways, outlined in Section 2.2, to safely introduce un-trusted user level code into the kernel, we believe that a kernel embedded interpreteris the most e�cient and best suited approach for event handlers. Therefore, the dis-sertation will attempt to prove the following thesis:A kernel embedded interpreter is an e�ective way to decrease the latencyof user-level communication primitives.It should be possible to write the handlers in C (or any other high-level language).The handler is then compiled into what we call R-code1. During code insertion, thekernel transforms R-code into direct threaded code. To avoid a parser and assemblerin the kernel, we transform R-code into a binary representation before it is insertedinto the kernel. The assembly of R-code into its binary representation can be doneby the application prior to insertion into the kernel, or o�-line when the applicationis compiled. The former has the advantage that the application can easily makeruntime changes, for example to insert constants, such as the logical node number.It has the disadvantage that the R-code assembler has to be resident on the node.The latter method avoids the overhead of last minute assembly, but makes it harderto make modi�cations at runtime. The types of code and the transformations areshown in Figure 4.1.R-code has to have several characteristics. Most importantly, it has to be possibleto interpret it at speeds that are close to assembly code generated by standard Ccompilers. R-code and the interpreter for it have to be able to take advantage ofcertain Puma kernel characteristics, as well as exist within the limitations imposedby the kernel (we will discuss them in the next paragraph). Another objectivefor the design of R-code is that it should be relatively simple for a C compiler to1The name R-code was chosen since P-code [106] and U-code [12] already exist. Any relationshipto the author's initials is purely coincidental. 35



36 CHAPTER 4. PROPOSED SOLUTION
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Figure 4.1: Code Transformations: From C code to threadedcode.produce e�cient R-code for the handlers we discussed in Chapter 1. We expectR-code to evolve during this research, swinging between easy to compile to and fastto interpret.The Puma kernel has a few unique characteristics that have to be taken intoconsideration when designing R-code. There is no demand paging under Puma.Therefore, all memory pages are always present. This gets around the problem ofhaving to bring in a page for a message that is currently being received or sent. Itmeans that the Puma kernel can always stream messages directly into user memory,with no need for bu�ering and costly memory copies. Puma portals are currentlyadded to the Linux kernel. The assumption that the necessary pages are always inphysical memory is no longer true in that environment. Our �rst implementationrequires that memory which is overlayed by a portal, must be wired down. It hasto be made unpagable before the Puma portal can be activated.For the R-code interpreter this implies that it can be very simple and the indi-vidual handlers can be executed to completion on each message arrival. No blockinghas to occur because of missing virtual memory pages. There will be a time limitfor each handler invocation to prevent a handler from consuming all CPU cycles ofa node in an in�nite loop. While the Puma kernel is executing, all interrupts aredisabled. In Puma it is therefore di�cult to enforce a running time limit on codethat is executing inside the kernel. For interpreted code it is easy however. Theinterpreter simply counts the number of instructions executed and aborts after apredetermined limit is reached.The Puma kernel and its data structures are static in size. This means that theroom to insert user handlers is of �xed size. The stacks of the virtual machine as



37well as the data segment of the handler are of �xed size. This should not pose anyproblems. The handlers and their local data will be small. Large handlers will alsorun longer and belong into user space.And last but not least, the Puma kernel is non-blocking. There are no functionsin the kernel that have to be suspended because a resource is busy. This meansthat handlers have to be given a certain (small) amount of time to run and then beaborted if that limit is exceeded. Most handlers will probably never reach that limit.Those that do, might be better implemented as up-calls to a user-level handler. Wewill determine the cross-over point, where it becomes more e�cient to do an up-callrather than using a kernel extension, when we do our experiments.Handlers should have access to the header of the message that triggered invo-cation of the handler, as well as the data delivered by the message. Aside fromthe data stack, there should be a �xed-size data area for each handler that allowsstorage of data between invocations of the same handler. Global sum operationsare an example where this storage becomes important. On the �rst invocation thehandler stores the value. On the second invocation it sums it with the newly arrivedvalue and sends the sum to the parent in the fan-in tree.Handlers should also have access to the memory owned by the process thatinstalled the handler. This allows handlers to manipulate counters and set 
agsinside the application. In the C code for the handler these memory references shouldbe marked as external. A good way of linking these references to actual memorylocations in the running application has to be found.Handlers that fault (on division by zero for example) or attempt unsafe opera-tions (illegal instructions or illegal memory accesses) are terminated. A return codeassociated with the handler should indicate the error. For debugging purposes andperformance tuning as much information as possible about the handler run should bemade available to the application that inserted the handler. This could be achievedby having two interpreters in the kernel: A high-performance one, and another thatlogs information such as running time, register usage, external memory accesses,etc.The interpreter has to be very fast. We currently plan a stack-based virtualmachine which introduces the problem of mapping a stack onto a register �le. Therehas been some research in this area and we intend to �nd a good solution for the R-code interpreter. If necessary, we may consider to change to a register-based virtualmachine. At the present time this seems unlikely, though.



Chapter 5Statement of WorkA plan of action for the remainder of the research [55].To validate that an interpreter is fast enough to support handlers inside thekernel, we will compare a kernel embedded interpreter approach with a trustedcompiler solution as well as software based fault isolation. The measurements willbe performed using the Puma operating system. This system is currently runningon the Intel Paragon using Intel i860 RISC CPUs. It also runs on the Intel Tera
oparchitecture which uses Intel Pentium Pro (P6) CISC CPUs.Puma will be modi�ed to let a user program install a portal event handlerat runtime. The handler can be written in R-code and will be interpreted when amessage arrives. The handler can also be a binary that has undergone software basedfault isolation. Alternatively, the handler can simply be trusted, assuming it camefrom a trusted compiler. In the latter two cases no interpretation during executiontime takes place; the inserted handler is executed directly. Baseline comparisons willbe made against the standard user-level portal event handlers of Puma. A handlerthat takes longer to execute inside the kernel, than the same handler at user levelincluding the context switch overhead, should probably be run at user level.During the insertion of software isolated code, the algorithm described in [102]should be applied. However, since we are mainly interested in the measurement ofexecution time, not code insertion time, we will most likely forgo this veri�cationstep.The simplest way to integrate code from a trusted compiler, is to directly linkit into the kernel. Insertion then consists of selecting the appropriate routine to beexecuted on message arrival. This is a su�cient procedure to measure executiontime of such handlers. It does not address the cost of linking and binding, nor theruntime system overhead of a type-safe language. Linking and binding costs arepaid at code insertion and will be more or less ignored by this research. Runtimesystem overhead has to be taken into consideration, though. All handlers, whethertrusted, interpreted, or software fault isolated, should be represented by the same Csource to make the comparison fair. To estimate the runtime system overhead of a38



39type-safe language, we will modify the C compiler to insert instructions that modelbounds checks.We will measure the performance of representative handlers for broadcast, MPI,Split-C, and Cilk. Ideal test conditions require that the same source code is usedfor each handler in any of the three insertion methods. For this reason we will usethe retargetable C compiler lcc [35], and modify it in the following manner.For the �rst experiment, we will retarget lcc so that it produces R-code. R-codewill be the same for the i860 and x86 architecture. There exists already a back-endfor lcc that produces x86 code. A member of the Puma team is currently building aback-end for the i860. For the second experiment, these back-ends will be modi�edto insert software isolation code before each load, store, and jump instruction. Thiswill produce software isolated code. For the third set of experiments we will modifythe x86 and i860 back-ends to introduce range checks, and other runtime checkstypically performed by the runtime environment of a type-safe language such asModula-3 used in the SPIN project.Therefore, the same compiler (with di�erent back-ends) will be used to generatecode for all three techniques on a RISC and a CISC architecture. The operatingsystem and the test applications are going to be the same for all six possible con-�gurations. Table 5.1 shows all six con�gurations under which each test will beperformed. Table 5.1: Test Con�gurationsParagon, i860 T
ops, x86interpreted p pSFI p ptrusted p pup-call p pTo determine the tradeo� between kernel insertion and up-calls, we will alsomeasure the cost of using the Puma portal event handler up-call mechanism. Again,the handlers will be compiled using lcc. No protection mechanisms will be compiledinto these handlers, since they run at user level.Table 5.2 lists the steps to be performed and approximate completion dates:



40 CHAPTER 5. STATEMENT OF WORK
Table 5.2: Project MilestonesCompletion TaskDate4/1/96 Initial design of R-code completed plus set of tools(non-optimized interpreter, assembler, disassembler).5/1/96 Retarget lcc to produce i860 code.5/1/96 Retarget lcc to produce R-code.9/8/96 Puma kernel able to insert R-code and interpret it on messagearrival.10/1/96 Optimized i860 versions of kernel interpreter.10/13/96 R-code modi�ed to be best suitable as a target for lcc.10/17/96 i860 back-end of lcc modi�ed to insert software isolatinginstructions.11/1/96 i860 back-end modi�ed to generate runtime checks for type-safelanguages.11/1/96 Execution of software isolated code in i860 kernel enabled.11/15/96 x86 back-end of lcc modi�ed to insert software isolatinginstructions.11/15/96 Optimized x86 versions of kernel interpreter.11/22/96 x86 back-end modi�ed to generate runtime checks for type-safelanguages.12/1/96 Execution of software isolated code in x86 kernel enabled.12/15/96 Test suite of handlers selected and compiled for all targets.12/22/96 Up-call mechanism in i860 kernel enabled.1/9/96 Up-call mechanism in x86 kernel enabled.2/1/96 Performance measurements completed on all targets.3/1/96 Dissertation written.
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